Opportunities for Semantic Web knowledge representation to help XBRL

by Benjamin Grosof
Senior Research Program Manager, Vulcan Inc.; and Principal Consultant, Benjamin Grosof & Associates, LLC
http://www.mit.edu/~bgrosof

Workshop on Improving Access to Financial Data on the Web

http://www.w3.org/2009/03/xbrl/program.html
Co-organized by XBRL International and World Wide Web Consortium (W3C) hosted by FDIC, Arlington, VA October 5-6, 2009
Relevant Background of Presenter

• Involved with XBRL since 2001
 – Research on semantic rules for financial reporting and info integration
 • E.g., contextual mappings between ontologies incl. equational-form
 – Informal scientific adviser to XBRL Intl. and W3C during 2005-2007

• Senior Research Program Manager, Vulcan, Inc. (Paul G. Allen’s co.)
 – Leads SILK and Advanced Research thrust in Vulcan’s Project Halo
 • Game-changer rule-based knowledge representation language & system
 – Also advises Venture Capital arm (leading investor in the space)

• Principal, Benjamin Grosof & Associates (consulting – part time, since MIT days)

• Pioneer/inventor of semantic rules for web and enterprises. Basis for:
 – Main web industry standards
 • W3C RIF (Rule Interchange Format)
 – Also: the RuleML standards design it was based on
 • OWL RL (Web Ontology Language’s Rules Profile)
 – Business applications pilots and strategy roadmaps
 • E-commerce; trust; finance; mobile; biomed; etc.
 – Oracle’s and IBM’s pioneering semantic rules products
Outline

1. Overview

2. Drill down:
 - Uses of Semantic Rules for XBRL
 - Knowledge Representation (KR) & Semantic Rules on Web (if there’s time)

3. Wrap-up: Directions
History of Parallax

• XBRL and Semantic Web have historically evolved separately and in parallel with each other
 – Began about the same time
 – Communities mainly non-overlapping
• Convergent evolution, to a considerable degree
 – Data, ontologies, and rules – in XML markup
• Now: large opportunities for synergy
 – Leverage/share technical approaches
 … and application domains
What Semantic Web can offer XBRL

1. Sophistication in knowledge representation (KR)

 Overall: expressiveness; interoperability; performance optimization

 – Data representation

 Better for wide sharing than plain XML
 • RDF unordered directed-graph with Webized naming

 – Semantic rules

 Better for wide sharing than previous kinds of business rules
 • Many uses specific to business reporting and financial info integration
 • Can handle exceptions, changeUpdates, reformulations gracefully
 – “Defaults”, “defeasibility”, “logical nonmonotonicity”, “prioritized conflict handling”
What Semantic Web can offer XBRL (cont.’d)

2. Sophistication in knowledge acquisition (KA)
 – Target “business users”/“subject matter experts”, collaboration
 • UI & KR for authoring & explanation
 – Controlled natural language; tabular and graphical UI metaphors
 – Semantic wikis, e.g., Vulcan’s Semantic MediaWiki+ (SMW+) – semantic enhancement of Wikipedia software
 – Via knowledge interchange (translation between KR formats)
 • E.g., legacy database (DBMS) and business rule systems (BRMS)

3. Related domain ontologies and knowledge bases (KBs)

4. “Virality” to more applications, methods, domains
 ⇒ e-commerce, health, security, media/social, BI/marketing, …
What XBRL can offer Semantic Web

• A centrally important domain of knowledge and tasks

• Practicality
 – Potentially a platform for wide acceptance & adoption of SW

• Firm connection to XML-Schema

• \(\Rightarrow \) Incentive for SW community to collaborate with XBRL
Outline

1. Overview

2. Drill down:
 - Uses of Semantic Rules for XBRL
 - Knowledge Representation (KR) & Semantic Rules on Web (if there’s time)

3. Wrap-up: Directions
Uses of Semantic Rules for XBRL

- Ontology mappings: contextual, reformulation
 - Examples:
 - Price with vs. without shipping, tax
 - Earnings last 4 qtrs vs. \{last 3 qtrs + forecast next qtr\}
 - Profit with vs. without depreciation
 - Historicals when statutory treatment changes
 - Implicit context: use a typical definition of revenue
 - Your vs. my pro-forma or analytic view
 - Between companies, governmental jurisdictions
 - Exception handling, special cases, one-time events
 - Footnotes – “where the real action is”
 - Example: Revenue includes sale of midtown NYC headquarters bldg
Uses of Semantic Rules for XBRL, cont.’d

• Policies, “rules”, regulations, laws
 – Trust: confidentiality, access, authorization
 – Regulatory & legislative, compliance & governance
 – Other business and government operations

• Analytics & monitoring
 – Queries & (persistent) views
 • Supersumes SQL, SPARQL, XQuery
 – Contextualized (see last slide)

• Decisions & triggered actions – automated, monitor-based
Example: Exception in Ontology Translation (in SILK)

/* Company BB reports operating earnings using R&D operating cost which includes
price of a small company acquired for its intellectual property. Organization GG
wants to view operating cost more conventionally which excludes that acquisition
amount. We use rules to specify the contextual ontological mapping. */

@{normallyBringOver} \(?\text{categ}(\text{GG})(?\text{item})\) :- \(?\text{categ}(\text{BB})(?\text{item})\);
@{acquisitionsAreNotOperating} neg \(?\text{categ}(\text{GG})(?\text{item})\) :-
acquisition(\text{GG})(?\text{item}) and (?\text{categ}(\text{GG}) \#\# \text{operating}(\text{GG}));
overrides(acquisitionsAreNotOperating, normallyBringOver); /* exceptional */
acquisition(\text{GG})(?\text{item}) :- price_of_acquired_R_and_D_companies(\text{BB})(?\text{item});
\text{R_and_D_salaries}(\text{BB})(p1001); p1001[\text{amount} -> \$25,000,000];
\text{R_and_D_overhead}(\text{BB})(p1002); p1002[\text{amount} -> \$15,000,000];
price_of_acquired_R_and_D_companies(\text{BB})(p1003); p1003[\text{amount} -> \$30,000,000];
\text{R_and_D_operating_cost}(\text{BB})(p1003); /* BB counts the acquisition price item in this category */
\text{R_and_D_operating_cost}(\text{GG}) \#\# \text{operating}(\text{GG});
\text{Total}(\text{R_and_D_operating_cost})(\text{BB})[\text{amount} -> \$70,000,000]; /* rolled up by BB cf. BB’s definitions */
\text{Total}(\text{R_and_D_operating_cost})(\text{GG})[\text{amount} -> ?x] :- … ; /* roll up the items for GG cf. GG’s definitions */

As desired: |= \text{R_and_D_salaries}(\text{GG})(p1001); …
neg \text{R_and_D_operating_cost}(\text{GG})(p1003); /* GG doesn’t count it */
\text{Total}(\text{R_and_D_operating_cost})(\text{GG})[\text{amount} -> \$40,000,000];
Advantages of Standardized SW Rules

- Easier Integration: with rest of business policies and applications, business partners, mergers & acquisitions
- Familiarity, training
- Easier to understand and modify by humans
- Quality and Transparency of implementation in enforcement
 - Provable guarantees of behavior of implementation
 - Improved compliance and governance
- Reduced Vendor Lock-in
- Expressive power
 - Principled handling of conflict, negation, priorities
Outline

1. Overview

2. Drill down:
 - Uses of Semantic Rules for XBRL
 - Knowledge Representation (KR) & Semantic Rules on Web
 (if there’s time)

3. Wrap-up: Directions
Background: What is Knowledge Representation (KR)?

• The field of KR studies and designs particular knowledge representation languages/systems (KR’s).

• A KR includes:
 – A formal language for expressing premises.
 – A formal language for expressing conclusions.
 – A set of entailment principles that together, for any given set of premises, formally defines an associated set of sanctioned conclusions.

• In “declarative” KR, these principles are independent of inferencing procedure/control-strategy, and thus constitute a semantics, e.g., a model theory.
Background: Example KRs

1. Relational databases: relational algebra (SQL)
 • \equiv a subset of LP (below)
2. Mathematical classical logic: first-order logic (FOL)
 • Severe drawbacks for Web: brittleness, unscalability
3. Semantic rules, a.k.a. declarative Logic Programs (LP)
 • Basic case: Horn, e.g., W3C RIF Basic Logic Dialect (BLD)
 • State of art full-featured: Hyper LP, e.g., SILK, RuleML
4. Many others
 • Commercial rule and conceptual-modeling systems
 • Bayesian networks, inductive learning, fuzzy logic, etc.
LP is the Core KR in today’s world … incl. Sem. Web

- LP is the core logical KR of structured knowledge management today
 - Databases
 - Relational / SQL
 - XML semi-structured / XQuery
 - RDF semi-structured / SPARQL (triple stores)
 - Semantic Rule Standards
 - RuleML standards design
 - Rule Interchange Format (RIF)**
 - Semantic Ontologies
 - Most commercial implementations of OWL are based on semantic rules: Description Logic Programs (DLP) + moderate extensions. E.g., Oracle.
 - OWL 2** standard includes the RL Profile, i.e., its Rules subset
- The Semantic Web today is mainly based on LP KR
 - … and thus essentially equivalent to semantic rules
 - You probably just didn’t realize it!

** W3C Last Call Working Draft
Updated: 10-2009 Semantic Web Standards “Stack”

RL = Rule Profile
- Horn FOL expressible
- Horn LP expressible (i.e., DLP++)

RIF = Rule Interchange Format (W3C)
- BLD = Basic Logic Dialect
- FLD = Framework for Logic Dialects

Candidate designs for Rule extensions:
- SILK/RuleML, CL (Common Logic)

RIF
OWL RL
- OWL
- RDF Schema
- RDF Core

SparQL

Proof
- Logic framework
- FLD

RIF
Rules
- More
- ~SILK etc.
- BLD

Trust

XML
Namespaces

URI
Unicode

Copyright 2009 by Vulcan Inc. and Benjamin Grosof. All Rights Reserved.

Modified from slide by W3C (just added annotation)
SILK & Hyper LP: Overview

- A KR Language and KR System with reasoner, UI, interchange
 - Syntax & semantics, forward & backward inferencing, API, translators

- **Goal:** Expressiveness + Semantics + Scalability + Web

- **Focus:** Defaults and Processes, for question-answering in e-science & e-biz

- Largest rule research program in the US (that we’re aware of)
Outline

1. Overview

2. Drill down:
 - Uses of Semantic Rules for XBRL
 - Knowledge Representation (KR) & Semantic Rules on Web
 (if there’s time)

3. Wrap-up: Directions
What’s Coming in Semantic Rules

• Semantic Rules will increase over the next several years
 – In adoption
 • Sem Tech sector
 • BRMS sector
 – In expressiveness
 • W3C RIF includes a framework for extensions
 – Framework for Logic Dialects (FLD)
 • Likely to include extension similar to SILK
 – Plan to propose in 2010 a new RIF dialect under FLD
KR Challenges Needing Applied Research

- Numerical reasoning more closely integrated with symbolic reasoning
 - Equalities and equations
 - Inequalities, “constraints”
 - Money
 - Time (and dates)

- KR context mappings (reformulations)

- **OWL and RDF are quite weak in the above areas**
 - Semantic rule approaches, e.g., SILK, are much more capable
Individual and Community To Do’s

- Learn about Semantic Web and KR
- Think about how to use their strengths in your org/task
 - Plan ahead wrt design choices, based on requirements and what’s coming soon
- Standardization of more expressiveness
 - esp. semantic rules
- Applied research on numerical and reformulation aspects of KR (see last slide)
Resources For More Info

• Generally:
 – Personal webpage http://www.mit/edu/~bgrosof/
 – SILK webpage http://silk.semwebcentral.org

• Specifically (available at the above sites):
 – Position paper from this Workshop (the one by me)
 • “Links and References”, especially
 – Tutorial “Rules on the Web” (co-authored by me)
 • Half-day presentation at Intl. Semantic Web Conf. 2009 (upcoming on Oct. 26)
Thank You

Disclaimer: The preceding slides represent the views of the authors only. All brands, logos and products are trademarks or registered trademarks of their respective companies.