Logic Programming with Defaults and Argumentation Theories

Paper presentation at ICLP-2009
25th International Conference on Logic Programming
July 17, 2009, Pasadena, California

Hui Wan*, Benjamin Grosof**, Michael Kifer*, Paul Fodor*, Senlin Liang*

* Stony Brook University
** Vulcan Inc., http://silk.semwebcentral.org
Summary of LPDA Approach

- Use “meta-” rules in the LP itself to specify when rules ought to be defeated
- Well developed model theory, reducible to Normal LP
- Generalizes defeasible LP to HiLog higher-order and F-Logic frames
 - E.g., higher-order courteous defaults
- Unifies almost all previous defeasible LP approaches
- Simplifies implementation of defeasible LP
- Leverages most previous LP algorithms & optimizations
- Implemented as extension to Flora-2, a.k.a. SILK V1
 - Public release free for research use planned for ~ fall 2009
 - Use cases in science and business
Outline

- Introduction
 - Defeasible reasoning
 - Difficulties in defeasible reasoning
- LPDA framework
 - Syntax
 - Semantics
- Advantages of LPDA
- Implementation
Defeasible reasoning

- A form of common sense reasoning: rules can be true by default but may be defeated

- Application domains:
 - policies, regulations, and law
 - actions, change, and process causality
 - Web services
 - inductive/scientific learning
 - natural language understanding

- Existing approaches:
 - Courteous Logic Programs (Grosof)
 - The main approach used commercially to date (since IBM Common Rules 1999)
 - Defeasible logic (Nute et al.)
 - Prioritized defaults (Gelfond & Son)
 - Preferred answer sets (Brewka & Eiter)
 - Compiling preferences (Delgrande et al.)
 - … …
Examples of defeasible reasoning

Example 1:

@d1 flies(X) :- bird(X).
@d2 neg flies(X) :- penguin(X).

bird(tweety).
penguin(tweety).

overrides(d2,d1).

Answer: \{ bird(tweety), penguin(tweety), neg flies(tweety) \}
Examples of defeasible reasoning

Example 2:

\[
\begin{align*}
@a & \quad p. \\
@b & \quad q. \\
@c & \quad s. \\
\text{opposes}(p, s). \\
\text{opposes}(q, s). \\
\text{overrides}(a, c). \\
\text{overrides}(c, b).
\end{align*}
\]

Answer 1: \{p\}
Intuition: rule \(b\) is defeated by rule \(a\), rule \(c\) is defeated by rule \(b\).

Answer 2: \{p, q\}
Intuition: rule \(c\) is defeated by rule \(a\), so rule \(b\) is not defeated.

\textbf{No single intuition works for all application domains.}
Difficulties in defeasible reasoning

- How to do defeasible reasoning for higher-order logics, e.g., HiLog and F-logic?
 - They don’t have the notion of a head-predicate in a rule

- How to *lift and reuse* the analysis and reasoning techniques from LP with NAF to LP with defaults?
 - Proof theory. Efficient algorithms, e.g., for updating a rule base.
 - *Would like this to be systematic and straightforward.*

- How to integrate different intuitions and approaches, about the behavior of defeasibility itself, in a single reasoning system?
 - What is the “right” intuition, to apply in a given context?
LPDA Framework

- Logic Programming with Defaults and Argumentation theories

- LPDA program
 - Plain rules: non-defeasible statements
 - Labeled rules: defeasible statements

- Argumentation theory:
 - Defines reasoning arguments for defeating labeled rules

LPDA program

- definite statements
- defeasible statements

Decides when a statement is defeated

Argumentation theory
Argumentation Theory (AT)

- Composed of plain* rules
- A unary predicate, defeated
- May also contain auxiliary predicates used in axioms that define defeated.
 E.g., in courteous AT’s:
 - overrides (prioritization), opposes (exclusion constraint)
 - These appear in user-authored domain-knowledge axioms
 - $\text{refuted}, \text{rebutted}, \text{conflict}$
 - These typically appear only within the AT itself

- Most existing defeasible LP approaches can be described by some AT

* More generally, one can relax this.
AT Example

- AT^{GCLP}: captures the original generalized courteous LP (Grosof)

$\text{defeated}(?R) \quad :- \quad \text{defeats}(?S, ?R).

$\text{defeats}(?R, ?S) \quad :- \quad \text{refutes}(?R, ?S) \text{ or } \text{rebuts}(?R, ?S).

$\text{refuted}(?R) \quad :- \quad \text{refutes}(?R2, ?R).

$\text{rebuts}(?R, ?S) \quad :- \quad \text{conflict}(?R, ?S),
not \text{refuted}(?R), not \text{refuted}(?S).

$\text{candidate}(?R) \quad :- \quad \text{body}(?R, ?B), \text{call}(?B).

$\text{conflict}(?R, ?S) \quad :- \quad \text{candidate}(?R), \text{candidate}(?S), \text{opposes}(?R, ?S).

\text{opposes}(?R, ?S) \quad :- \quad \text{opposes}(?S, ?R).

\text{opposes}(?L1, ?L2) \quad :- \quad \text{head}(?L1, ?H), \text{head}(?L2, \text{neg} ?H).
LPDA Semantics: Least Model

- (Follows the general outline of Przymusinski for well-founded negation.)

\[P : \text{an lpda over language } L \]
\[AT : \text{an AT over language } L \]
\[B_L : \text{the Herbrand Base over language } L \]
\[M : \text{a partial Herbrand interpretation – a set of literals in } B_L \]
Consider ground cases.

\[M \text{ is a model of } (P, AT) \text{ when it satisfies} \]
- every plain rule in \(P \cup AT \)
- every labeled rule \(r \) in \(P \) such that $defeated(r)$ is not in \(M \)

\[M \text{ is a least model of } (P, AT) \text{ when it is minimal with respect to } \leq \]
- \(M_1 \leq M_2 \) iff \(M_1^+ \subseteq M_2^+ \) and \(M_1^- \supseteq M_2^- \)
 - \(M^+ \) = the set of not-free literals in \(M \); \(M^- \) = the set of not literals in \(M \)
 - (I.e., the usual notion of minimality for LP models; not here means NAF)
Iterative Quotient for LPDA

- The well-founded semantics for LPDA, like the WFS for NAF, is definable as an iterated least model.

- Przymusinski’s formulation of WFS for NAF uses a notion of the quotient of a rule set w.r.t. a partial interp.
 - Let Q be a set of rules, and J be a partial Herbrand interpretation for Q.
 - The quotient $\frac{Q}{J}$ is obtained by:
 - In the body of each rule in Q, replace $\neg L$ by the truth value of $\neg L$ in J.

- LPDA modifies this quotient notion so as to incorporate defeasibility. It adds:
 - For every labeled rule $@r L :- Body$ in Q,
 - If $J($defeated(r))=t, replace the rule with $L :- Body$, f.
 - If $J($defeated(r))=u, replace the rule with $L :- Body$, u.
 - (If $J($defeated(r))=f, replace the rule with $L :- Body$, t).
 - Remove rule labels.

The resulting LPDA quotient is a set of plain rules without not.
Well-Founded Model of LPDA

- **Thm**: LPDA WFM of \((P, AT) = \) usual WFM of \((P' \cup AT)\)
 - Where \(P'\) is obtained from \(P\) by:
 - For every labeled rule \(@r L : - Body\),
 - Replace it by: (see paper for details)
 \(@r L : - Body, \text{ not } defeated(r)\)
Well-Behavior of AT

- **Consistency:**
 \[X \text{ and } \neg X \text{ cannot both be true} \]

- **Strong consistency:**
 If \(L1 \) and \(L2 \) oppose each other
 then \(L1 \) and \(L2 \) cannot both be true

- **Overriding property:**
 \[
 \begin{align*}
 \text{} & \quad \text{@}r1 \quad L1 : - Body1 \\
 \text{and} & \quad \text{@}r2 \quad L2 : - Body2
 \end{align*}
 \]
 If \(L1 \) and \(L2 \) oppose each other and \(r1 \) overrides \(r2 \) and \(r1 \) is not defeated,
 then \(r2 \) is defeated.

- **Theorem:** The courteous AT’s (e.g., \(AT_{GCLP} \)) each ensure
 - consistency and strong consistency
 for the atoms appearing only in labeled rules
 - overriding property
Advantages of LPDA

- Generalizes defeasible LP to:
 - HiLog-style higher-order logics
 - F-logic style object-oriented features
- Unifies almost all previous defeasible LP approaches in one KR
 - Can combine multiple approaches in one system
 - Much simpler to analyze theoretically
- Simplifies implementation
 - LPDA In FLORA-2:
 - Only 20-30 rules per argumentation theory vs. 1000’s of lines of code (in previous works*)
 - Easy to debug and experiment with argumentation theories
- Improves performance radically when updating rules in courteous
 - Eliminates need to re-run a complex transformation
- Reuses most previous LP algorithms and optimizations

* E.g., Delgrande et al. A framework for compiling preferences in logic programs, TPLP 2003
Example 3

// An administrator who controls some privilege can grant that privilege to any user.

overrides(perm(?t1), perm(?t2)) :- ?t1 > ?t2.
// More recent privilege assignments have higher priority.

Kevin[states(2008)->neg print(Al)].
Bob[states(2009)->print(Al)].
Kevin[controls->?].
Bob[controls ->{print(?), neg print(?)}].

With \(AT^\text{GCLP} \), we get: print(Al)
Advantages of LPDA

- Generalizes defeasible LP to:
 - HiLog-style higher-order logics
 - F-logic style object-oriented features
- Unifies almost all previous defeasible LP approaches in one KR
 - Can combine multiple approaches in one system
 - Much simpler to analyze theoretically
- Simplifies implementation
 - LPDA In FLORA-2:
 - Only 20-30 rules per argumentation theory
 vs. 1000’s of lines of code (in previous works*)
 - Easy to debug and experiment with argumentation theories
- Improves performance radically when updating rules in courteous
 - Eliminates need to re-run a complex transformation
- Reuses most previous LP algorithms and optimizations

* E.g., Delgrande et al. A framework for compiling preferences in logic programs, TPLP 2003
Implementation in Flora-2 / SILK V1

- LPDA implemented as extension to Flora-2 (version Cornsilk, a.k.a. SILK V1)
 - Part of Vulcan’s SILK project (Semantic Inferencing on Large Knowledge) http://silk.semwebcentral.org
 - Free for research use, public release planned for ~ fall 2009
 - Selected users sooner

- Implemented 3 courteous argumentation theories
 - Original GCLP (1999)
 - A variant with alternative edge-case behavior/intuition
 - An expressive extension having generalized exclusion constraints that handle multi-way conflicts (not just pairwise)

- Use cases in college-level science, e-commerce, trust, …
Thank you!

Questions?

Disclaimer: The preceding slides represent the views of the authors only. All brands, logos and products are trademarks or registered trademarks of their respective companies.
Reserve slides
Adjust AT Behavior

Adjustment to AT^{GCLP}:

\[
\begin{align*}
\text{defeated}(?R) & :\text{- } \text{defeats}(?S, ?R), \text{not } \text{compromised}(?S). \\
\text{defeated}(?R) & :\text{- } \text{disqualified}(?R). \\
\text{defeats}(?R, ?S) & :\text{- } \text{refutes}(?R, ?S) \text{ or } \text{rebuts}(?R, ?S). \\
\text{compromised}(?X) & :\text{- } \text{refuted}(?R), \text{defeated}(?R). \\
\text{disqualified}(?X) & :\text{- } \text{defeats}^*(?X, ?X). \\
\text{refuted}(?R) & :\text{- } \text{refutes}(?R_2, ?R). \\
\text{refutes}(?R, ?S) & :\text{- } \text{conflict}(?R, ?S), \text{not } \text{compromised}(?R), \text{not } \text{refuted}(?R), \text{not } \text{refuted}(?S). \\
\text{candidate}(?R) & :\text{- body}(?R, ?B), \text{call}(?B). \\
\text{conflict}(?R, ?S) & :\text{- } \text{candidate}(?R), \text{candidate}(?S), \text{opposes}(?R, ?S). \\
\text{opposes}(?R, ?S) & :\text{- } \text{opposes}(?S, ?R). \\
\text{opposes}(?L1, ?L2) & :\text{- } \text{head}(?L1, ?H), \text{head}(?L2, \text{neg } ?H). \\
\end{align*}
\]