The SILK 2 System and RIF Dialect: Semantic Rules Grow Up

Benjamin Grosof*

June 24, 2010

30-min. presentation at SemTech 2010**

* Vulcan Inc., benjaming@vulcan.com
http://www.mit.edu/~bgrosof/

For More Info: http://silk.semwebcentral.org
http://projecthalo.com

** 2010 Semantic Technology Conference, San Francisco, CA, USA
http://www.semanticconference.com

© This presentation is copyright Benjamin Grosof and Vulcan Inc.
All rights reserved. (Limited copyright granted to Semantic Universe.)
Outline and Overview

- **SILK research program within Vulcan’s Project Halo**
 - Language and system for advanced knowledge representation (KR)
 - Digital Aristotle vision: question-answering for science
 - Scalability for social structured knowledge: entry, reuse, querying

- **SILK Language, Hyper Logic Programs KR, and RIF-SILK**
 - Expressive features: defaults, actions, higher-order, frames, webized, interchange
 - Advanced defaults: prioritized conflict handling, argumentation, hyper rules, tractability

- **SILK System**
 - Reasoning: layered architecture, transformations, tabling
 - Knowledge Acquisition (KA) and UI: interchange; editing, explanation

- **Potential application areas in business and government**
 - Horizontal: policies, workflows; ontology mapping, knowledge integration
 - Vertical: e-commerce, defense intelligence, trust, biomed, financial, mobile

- **Demo of default hyper rules in SILK GUI: edit, query, explain**

- **Conclusions**
 - Higher-abstraction KR closer to human cognition and social pragmatics
 - Radically extends expressive power of SQL, RDF(S), SPARQL, OWL-RL, RIF-BLD
 - Remedies major limitations of semantic web’s current KR foundation
Vulcan’s Project Halo

- **Vision of Digital Aristotle:** question-answering for science
 - Put the bulk of the world’s scientific and similar knowledge on-line
 - Answer questions, act as personal tutor, with deep reasoning

- **College-level science selected as initial domain focus**
 - Good metrics available: textbook-type exam Q’s. Initial domain task focus is:
 - Advanced Placement Exam (AP) in Biology, Physics, and Chemistry
 - Taken by USA high-school students to get credit for 1st-year college courses

- **AURA AI expert system developed (2004-)**
 - Controlled Natural Language, GUI, Frame-based KR, Problem-Solving
 - Students as users – formulate questions, formulate knowledge

- **Semantic MediaWiki+ developed (2007-)**

- **SILK developed (2008-)**
 - Largest* rule research program in USA. Multi-institutional: primarily via contractors.
 - A knowledge representation (KR) system: reasoner, language, UI, interchange.

* (that we’re aware of)
Aristotle Tutoring
Alexander

SILK Contributors current/past (partial list)

- Vulcan (Benjamin Grosof, Mark Greaves, Dave Gunning)
- Stony Brook University (Michael Kifer; students H. Wan, S. Liang, P. Fodor)
- Raytheon BBN Technologies (Mike Dean, Mark Burstein, C. Andersen, B. Ferguson)
- SRI International (Vinay Chaudhri, David Martin, Ken Murray)
- Cycorp (Keith Goolsbey, Doug Lenat, Jon Curtis, Ben Rode)
- Automata (Paul Haley)
- Boeing (Peter Clark)
- Ontoprise GmbH (Daniel Hansch, Jurgen Angele)
- Terrance Swift, consultant
- Richard Fikes, consultant (Stanford University)
- University of Toronto (Sheila McIlraith, S. Sohrabi, H. Ghaderi)
- Texas Tech University (Michael Gelfond, D. Inclezan)
- University of Texas (Bruce Porter, Ken Barker)
- University of Amsterdam (Bert Bredeweg)
- University of Freiburg (Georg Lausen)
- University of Michigan (Michael Wellman)
- Raphael Volz, consultant
SILK’s Goals

• Address fundamental requirements for scaling Semantic Web to widely-authored Very Large KBs in business and science that answer questions, proactively supply info, and reason powerfully

• **Expressiveness + Semantics + Scalability**
 • Push the frontier. Language and system.

• **Better Knowledge Representation (KR)**
 • **Expressive power:** defeasibility, higher-order. E.g., causal processes in AP Biology.
 • **Performance** scalability of reasoning, including knowledge updates

• **More effective Knowledge Acquisition (KA)**
 + By Subject Matter Experts (SMEs), not programmers or knowledge engineers
 + **Collaboratively** – incorporate large #s of SMEs in KB construction & maintenance
 + Leveraging the Web

• **Better KR also for sake of better KA**
 • Web knowledge interchange (with merging) for scalability of collaborative KA
 • The underlying KR is the target for KA: “The KR is the deep UI”
 • Understandability via semantics and expressiveness
 • Raise abstraction level closer to the user’s natural language and cognition
Expressiveness “Brittleness” Areas Targeted

- **Defaults/Exceptions/Defeasible** (incl. nonmonotonic reasoning, theory revision, argumentation, truth maintenance)
 - A kinematics problem situation has standard earth gravity, and no air resistance. [physics AP]
 - A given organism has the anatomy/behavior that is typical/normal for its species, e.g., a bat has 2 wings and flies. [bio AP]
 - Price info for an airplane ticket on Alaska Air’s website is accurate and up to date. [e-shopping]
 - Practical reasoning almost always involves a potential for exceptions

- **Hypotheticals**
 - If Apollo astronaut Joe golfed a ball on the moon, then standard earth gravity would not apply. [negative hypothetical]
 - [conflict between defaults, resolved by priority among them]
 - If I had swerved my car 5 seconds later than I did, I would have hit the debris in the left lane with my tire. [counterfactual]

- **Actions and Causality**
 - If a doorknob is incompletely inserted into the keyhole, turning the key will fail. [precondition]
 - During the mitotic stage of prometaphase, a cell’s nuclear envelope fragments [biology AP]
 - After a customer submits an order on the website, Amazon will email a confirmation and ship the item. [Event-Condition-Action (ECA) rule] [policy]

- **Processes (i.e., representing and reasoning about processes)**
 - Mitosis has five stages; its successful completion results in two cells. [compose] [partial description]
 - If Amazon learns that it will take an unexpectedly long time to stock an ordered item, then it emails the customer and offers to cancel the order without penalty. [exception handling]
 - A Stillco sensor-based negative feedback thermal regulator is adequate to ensure the overnight vat fermentation of the apple mash will proceed within desired bounds of the alcohol concentration parameter. [science-based business process]

Ubiquitous in science, commonsense, business, etc. All are interrelated.
Declarative Logic Programs (LP) is the Core KR in today’s world … including the Semantic Web

- LP is the core KR of structured knowledge management today
 - Databases
 - Relational, semi-structured, RDF, XML, object-oriented
 - SQL, SPARQL, XQuery
 - Each fact, query, and view is essentially a rule
 - Semantic Rules
 - Rule Interchange Format (RIF): -BLD, -Core
 - RuleML standards design, including SWRL
 - Semantic Ontologies
 - RDF(S)
 - OWL-RL (= the Rules subset). E.g., Oracle’s implementation of OWL.

- The Semantic Web today is mainly based on LP KR
 - … and thus essentially equivalent to semantic rules
 - You might not have realized that!
SILK’s new KR: Hyper Logic Programs

- Extended LP that is the first to combine key advanced features
- **Defaults** + **Higher-Order** + **External Actions/Events/Queries**
- + Webized, Frames, (clean) Negation and NAF, Equality, Functions, Skolems, Aggregates, Integrity Constraints, Lloyd-Topor, …
- Tightly interoperates with very broad case of first order logic (FOL), too
 - Any clause, not just Horn. Sound from FOL viewpoint.
- Transforms knowledge from higher to lower abstraction levels
 - Higher is good for KA; lower is good for reasoning (code reuse, optimization)
- **Tractable computationally** – complexity is same as Horn LP
 - Polynomial time – similar to relational DBMS – if there’s no recursion thru functions
 - Retains pragmatic quality of LP: “intuitionistic” – lack general “reasoning by cases”
- **New approach to defaults**
 - **Argumentation theory**: ~20 “meta-” rules specify debate principles for defeat
 - Much more **expressive**: higher-order, equality, …
 - Much **easier to implement**: ~20 rules instead of 1000’s of lines of code
 - Much more **efficient**: eliminates expensive knowledge recompilation step
 - **Hyper rules**: omni-directional clauses, prioritized handling of multi-way conflicts
SILK’s KR Approach, continued

• **KR Language**
 - Syntax: ASCII presentation syntax, abstract syntax, RIF dialect (RIF-SILK)
 - Semantics: model theory, proof theory. Closely related to the transformations (above).

• **Knowledge Interchange**
 - Via load, or query, or event. E.g., embed a SPARQL query in the body of a rule.
 - KR languages: SPARQL, RDF(S), SQL, ODBC; SILK, RIF, OWL(-RL), Cyc, AURA

• **Reasoning system**
 - Backward inferencing primarily – i.e., query answering
 - Tabling saves and reuses computation from previous subqueries
 - Supports fast updating and forward inferencing
 - Good efficiency/scalability of performance

• **Synergizes 20 years of LP research progress**
 - Courteous defaults and external actions/queries cf. IBM Common Rules, SweetRules
 - Higher-order cf. HiLog, Common Logic
 - Negation-As-Failure cf. well founded
 - Performance optimizations from DBMS, Prolog, BRMS, AI

• **Extensive requirements analysis, use cases, benchmarking**
Representational Uses for Defaults and Higher-Order

Defaults (cf. Courteous, with Prioritization)

- Negation
- Pragmatic knowledge/reasoning has potential for exceptions and revision
 - Learning and science: may falsify previous hypotheses after observation or communication
- Debate and trust: priorities from authority, reliability, recency
- Updating, merging, change: increase modularity/reuse in KA/KB lifecycle
- Process causality: persistence, indirect ramified effects, interference
- Hypotheticals, e.g., counterfactuals
- Inheritance: more-specific case overrides more-general case
- Policies, regulations, laws – the backbone of society and institutions
- Natural language understanding (NLU) aspects: e.g., co-reference

Higher-Order (cf. Hilog and reification)

- Meta- knowledge and meta- reasoning, generally
- Ontology mapping, KB translation, KR macros, reflection, NLU aspects
- Provenance, multi-agent belief, modals, many aspects of context
RIF-SILK Dialect

• **It’s expressively powerful RIF** (RIF = W3C Rule Interchange Format standard)

 • New dialect defined using RIF’s Framework for Logic Dialects (FLD)
 • Extends (supersumes) RIF-BLD (Basic Logic Dialect) and RIF-Core
 • These are based essentially on Horn LP
 • Notably: adds defaults and external actions (side-effectful)
 • Needed for most of today’s business applications of (non-semantic) rules
 • Retains “Grade AAA” semantics – model-theoretic
 • Retains computational scalability of Horn LP

• **Status**

 • Semantics section is in progress (summarizes previous theory papers)
 • Implemented translator (bidirectional) is in current SILK system
 • Under discussion with W3C: role in next steps of RIF overall
• SHOW briefly: RIF-SILK Dialect specification document
SILK Architecture today (V2.1+)

- **API Functionality**
 - Higher-order defaults reasoning, combines many other advanced KR features
 - SILK and external KR language support integrated tightly with reasoning engine

- **UI Functionality**
 - Graphical, tabular
 - For Knowledge Engineers

- **Future Items**
 - UI: SME-friendlier, English (NL)
 - KR: probabilistic, parallelization, more interchange KRs

- **Test Sets Focus**
 - Defaults, Process
 - AP esp. Biology

External Knowledge & Reasoners
- KB #1
- KB #n
- Engine #1
- Engine #m

API
- **Language**
 - Interoperability
 - Parsing & Serialization
 - Abstract Syntax

- **Engine**
 - Querying
 - Updating
 - Actions

- **Flora-2 Engine**
- **XSB** (InterProlog and ODBC interfaces)

KR Languages
- SILK, RIF-SILK
- RIF-BLD, OWL-RL
- SPARQL, RDF(S)
- SQL, Cyc, AURA
Ecology Ex. of Causal Process Reasoning in SILK

/* Toxic discharge into a river causes fish die-off. */
/* Initial facts, and a constraint that fish count is unique */

@[strict] occupies(trout,Squamish);
@[strict] fishCount(0,Squamish,trout,400); // first argument is an integer time
@[strict] neg (fishCount(?s,?r,?f,?C1) and fishCount(?s,?r,?f,?C2)) <= ?C1 != ?C2;
/* Action/event description that specifies causal change, i.e., effect on next state */
@[tag->tdf1] fishCount(?s+1,?r,?f,0)
 <= occurs(?s,toxicDischarge,?r) and occupies(?f,?r);
/* Persistence (“frame”) axiom */
@[tag->pef1] fishCount(?s+1,?r,?f,?p) <= fishCount(?s,?r,?f,?p);
/* Action effect axiom has higher priority than persistence axiom */
@[strict] silk:overrides(tdf1,pef1).
/* An action instance occurs */
@[id->UhOh, strict] occurs(s1,toxicDischarge,Squamish).

As desired: |= fishCount(1,Squamish,trout,400)
 |= fishCount(2,Squamish,trout,0)

In Frame syntax: subject[property -> object] stands for property(subject,object).
E-Commerce Ex. of Causal Process Reasoning

/* E-commerce delivery logistics. */
/* Initial fact, and constraint that location is unique */
@[strict] loc(0, PlasmaTV46, WH_LasVegasNV); // first argument is an integer time
@[strict] neg(loc(?s, ?item, ?posn1) and loc(?s, ?item, ?posn2)) \iff ?posn1 != ?posn2;
/* Action/event description that specifies causal change, i.e., effect on next state */
@[tag->mov] loc(?s+1, ?item, ?addr) and neg loc(?s+1, ?item, ?warehouse)
\iff shipment(?s, ?item, ?warehouse, ?addr) and loc(?s, ?item, ?warehouse);
/* Persistence (“frame”) axioms about location */
@[tag->peLoc] loc(?s+1, ?item, ?posn) \iff loc(?s, ?item, ?posn);
@[tag->peLoc] neg loc(?s+1, ?item, ?posn) \iff neg loc(?s, ?item, ?posn);
/* Action effect axiom has higher priority than the persistence axioms */
 silk: overrides(mov, peLoc)
/* An action instance occurs */
@[id->deliv57, strict] shipment(1, PlasmaTV46, WH_LasVegasNV, Nine_Fog_St_SealettWA);

As desired: |= loc(2, PlasmaTV46, Nine_Fog_St_SealettWA);
 |= neg loc(2, PlasmaTV46, WH_LasVegasNV);

In Frame syntax: subject[property -> object] stands for property(subject,object).
Complex AP Biology Examples

• Causal process reasoning is a large portion of AP Biology, often requiring multi-step causal chains and/or multiple grain sizes of description to answer a question.

• Several such complex examples drawn from exams or textbooks have been successfully represented in SILK. E.g.:

 • "A researcher treats cells with a chemical that prevents DNA synthesis from starting. This treatment traps the cells in which part of the cell cycle?"
The correct answer is: G1 [which is a sub-phase of interphase]

 • "In some organisms, mitosis occurs without cytokinesis occurring. This will result in:
 a. cells with more than one nucleus
 b. cells that are unusually small.
 c. cells lacking nuclei.
 d. destruction of chromosomes.
 e. cell cycles lacking an S phase."
The correct answer is: a. [two nuclei form in a cell, but no new cell wall splits the cell]

 • “Suppose the typical number of chromosomes in a human liver cell was 12. [Notice this is counterfactual; there are actually 46]. What would the typical number of chromosomes in a human sperm cell be?”
The correct answer is: 6 [half of the number in the liver and most other organs]
Potential Applications in Business and Government

• **Horizontal**
 - Policies and policy-based workflows
 - Monitor, report, react, handle exceptions, execute, enforce, customize
 - Trust: confidentiality, authorization, compliance, governance
 - Ontology mapping/mediation and knowledge integration
 - Perspective: the mappings themselves constitute ontological knowledge. E.g., a dictionary.

• **Vertical**
 - E-commerce: shopping & advertising, contracts, customer care, catalogs
 - Defense: intelligence, operations
 - Financial: reporting, regulatory compliance
 - Biomed: pharma, e-science, clinical records and guidance, insurance
 - Mobile: personalize communication

• **Many use cases in RIF, RuleML, SWSL documents & prototypes**
 - E.g., employ defaults or other features not yet well supported commercially
DEMOS

• SHOW DEMO of hyper rules in SILK GUI: edit, query, explain

• Also: Demo’d at ISWC-2009 and RuleML-2009 conferences
 • Scenario of environmental watchdog group’s monitoring workflow
 • Recognize toxic discharge into Ohio River watershed from sharp decline in fish count
 • Alert news media, government agencies, citizens social network
 • Reactive: standing queries trigger external actions upon update events
 • Load imported RDF(S) and RIF-BLD
 • Externally query SPARQL, and Excel via ODBC
 • This demo won an award at RuleML-2009, essentially for best system

• Aim to make videos of both these demos and post on SILK website
Remedying FOL Semantics’ Lack of Scalability

• Hyper LP handles conflict robustly – get consistent conclusions
 • Whereas FOL is a “Bubble” – it’s perfectly brittle semantically in face of contradictions from quality problems or merging conflicts.
 • Any contradiction is totally contagious – the conclusions all become garbage

 E.g., OWL beyond the RL subset suffers this problem. So does Common Logic. (Technically, RIF-BLD and RDF(S) are defined via FOL semantics too, although their typical implementations are essentially LP.)

A KB with a million or billion axioms formed by merging from multiple Web sources, is unlikely to have zero KB/KA conflicts from:
 • Human knowledge entry/editing
 • Implicit context, cross-source ontology interpretation
 • Updating cross-source
 • Source trustworthiness

• Hyper LP’s approach provides a critical advantage for KB scalability
 • semantically, as well as computationally
FOL: A Bubble

Extreme sensitivity to conflict limits its scalability in # of axioms and # of merges

Left: http://www.dailymail.co.uk/sciencetech/article-1199149/Super-slow-motion-pictures-soap-bubble-bursting-stunning-detail.html
Above: http://img.dailymail.co.uk/i/pix/2007/11_03/BubblePA_468x585.jpg
Conclusions

- Radically extends the KR power of W3C OWL, SPARQL, RIF-BLD – and of SQL
 - Defaults and robust conflict handling – cope with knowledge quality and context
 - Higher-order and flexible meta-reasoning – elevate meta-data to meta-knowledge
 - Actions and events, cf. production rules and process models – activate knowledge

- Raises the KR abstraction level for business users (SMEs) and NL KA/UI

- Use cases in biomed, business policies, ontology mapping, e-commerce, …

- Redefining the KR playing field for Semantic Web, business rules, and rule-based process management
 - Defaults and Higher-Order – yet retain computational web scalability
 - Escape from FOL Bubble – yet retain grade-AAA model-theoretic semantics

- Motto: “Transforming Knowledge”
 - Composes a set of KR transformations for …
 - Expressive extensions – language and semantics
 - Translations between KRs/syntaxes, for interchange
 - Reuse of previous algorithms and implementations

http://silk.semwebcentral.org
Acknowledgements

• **SILK contributors**
 - (previously listed)

• **Other contributors to several key previous KR efforts**
 - RuleML and SWSL (Semantic Web Services Language) standards designs
 - Notably: Harold Boley and Said Tabet
 - SweetRules and Flora-2 systems
 - Notably: Guizhen Yang
SILK – Transforming Knowledge

Thank You

Disclaimer: The preceding slides represent the views of the author only. All brands, logos and products are trademarks or registered trademarks of their respective companies.

© This presentation is copyright Benjamin Grososf and Vulcan Inc. All rights reserved.