SILK: Semantic Rules
Take the Next Big Step in Power

Benjamin Grosof*

June 18, 2009
1-Hour presentation at SemTech 2009**

* Vulcan Inc., benjaming@vulcan.com
http://silk.projects.semwebcentral.org
http://www.mit.edu/~bgrosof/

** 2009 Semantic Technology Conference, San Jose, CA,
http://www.semantic-conference.com
Outline of Talk

• Overview
 • Vision, Origins, Goals, Effort, Approach, Roots, Status
 • V1 Prototype, Theory, Language; V2 plans
 • Examples and Use Cases

• Drill down on the KR Language and System
 • Requirements analysis
 • Hyper Logic Programs KR approach and expressive features
 • Higher-Order Defaults. Weakened Classical, via Hypermonotonic mapping.
 • Comparison to other semantic rule systems and standards
 • RIF, BRMS, OWL, DBMS, etc.

• Conclusions and Directions
 • Roadmap for SILK and Industry
 • How You can be Involved
SILK’s ambitious Vision for longer-term Impact

• Key Knowledge Representation (KR) infrastructure sufficient to enable creation of global, widely-authored, very large knowledge bases (VLKBs) about science and business* that answer questions and proactively supply information, using powerful reasoning about rules and processes, that can be customized in their content and actions for individual organizations or people

• Newest part of Vulcan’s Project Halo which addresses the problems of scale and brittleness in KBs, including the Knowledge Acquisition and UI aspects

* “Business” here is shorthand for human affairs, incl. government
“SILK” – The Name

- “Semantic Inferencing on Large Knowledge”

- What the next generation Web will be spun from
Vulcan’s Project Halo Begins; 1st system is AURA

- **Vision of Digital Aristotle**
 - Put the bulk of the world’s scientific and similar knowledge on-line
 - Answer questions, act as personal tutor, with deep reasoning

- **How to operationalize Digital Aristotle as a research effort?**

- **College-level science selected as initial domain focus**
 - Medium wide, medium deep.
 - Good metrics available: textbook-type exam Q’s. Initial domain task focus is:
 - **Advanced Placement Exam (AP) in Physics, Chemistry, and Biology**
 - Taken by USA high-school students to get credit for 1st-year college courses

- **AURA expert system developed** (see http://www.ai.sri.com/project/aura)
 - Novel combination of available techniques from AI
 - Controlled Natural Language, GUI, Frame-based KR, Problem-Solving
 - Students as users – formulate questions, formulate knowledge
 - Initial version 2004, then refined extensively and tested rigorously
Aristotle Tutoring
Alexander

Halo Enters Semantic Web Era; 2nd system is SMW+

- **How to enable effective Knowledge Acquisition (KA)?**
 - By Subject Matter Experts (SMEs), not programmers or knowledge engineers
 - **Collaboratively** – incorporate large #s of SMEs in KB construction & maintenance
 - Leveraging the Web

- **Halo Extension to Semantic MediaWiki (SMW+) developed.**
 - Open source extension of the MediaWiki software Wikipedia runs on
 - Supports RDF and OWL subset, interleaved tightly with hypertext
 - Rapid maturation of initial functionality
 - Upcoming release: simple semantic rules (Horn) and access control
 - Strong community uptake, early commercial adoption already
 - For more, see http://wiki.ontoprise.de

- **But need better KR too, in part for sake of KA.**
 - The underlying KR is the target for KA: “The KR is the deep UI”
 - Web knowledge interchange (with merging) for scalability of collaborative KA
Goals for SILK KR Effort – Halo’s 3rd system

• **Expressiveness + Semantics + Scalability**
 - Push the Frontier: high risk, high return

• **Address requirements for AURA on AP task (\& for SMW+)**
 - Expressive power (e.g., defaults and processes)
 - Understandability via semantics and expressiveness
 - Raise abstraction level closer to the user’s natural language and cognition

• **Address requirements for long-term Digital Aristotle vision**
 - Wider set of domains and tasks, via KR expressiveness and better KA
 - Knowledge interchange via semantics and expressiveness
 - Performance scalability of reasoning (incl. truth maintenance)
Expressiveness “Brittleness” Areas Targeted

- **Defaults/Exceptions/Defeasible** (incl. nonmonotonic reasoning, theory revision, argumentation, truth maintenance)
 - A kinematics problem situation has standard earth gravity, and no air resistance. [physics AP]
 - A given organism has the anatomy/behavior that is typical/normal for its species, e.g., a bat has 2 wings and flies. [bio AP]
 - Price info for an airplane ticket on Alaska Air’s website is accurate and up to date. [e-shopping]
 - Practical reasoning almost always involves a potential for exceptions

- **Hypotheticals**
 - If Apollo astronaut Joe golfed a ball on the moon, then standard earth gravity would not apply. [negative hypothetical]
 - [conflict between defaults, resolved by priority among them]
 - If I had swerved my car 5 seconds later than I did, I would have hit the debris in the left lane with my tire. [counterfactual]

- **Actions and Causality**
 - If a doorkey is incompletely inserted into the keyhole, turning the key will fail. [precondition]
 - During the mitotic stage of prometaphase, a cell’s nuclear envelope fragments [biology AP]
 - After a customer submits an order on the website, Amazon will email a confirmation and ship the item. [Event-Condition-Action (ECA) rule] [policy]

- **Processes (i.e., representing and reasoning about processes)**
 - Mitosis has five stages; its successful completion results in two cells. [compose] [partial description]
 - If Amazon learns that it will take an unexpectedly long time to stock an ordered item, then it emails the customer and offers to cancel the order without penalty. [exception handling]
 - A Stillco sensor-based negative feedback thermal regulator is adequate to ensure the overnight vat fermentation of the apple mash will proceed within desired bounds of the alcohol concentration parameter. [science-based business process]

Ubiquitous in science, commonsense, business, etc. All are interrelated.
SILK Effort Overview

• **Begun in 2008**
 • Part of Halo Advanced Research (HalAR), the new half of Project Halo

• **Largest rule research program in the US** (that we’re aware of)
 • Primarily via contractors

• **Structured Knowledge as initial focus**

• **KR System with multiple software components**
 • Logical Language, incl. Syntax and Semantics
 • Reasoning, incl. Backward and Forward Inferencing
 • Web Knowledge Interchange, incl. Translators
 • KA/UI Support, incl. for Editing and Explanation

• **Evolutionary Approach**
 • Start from **known core KR**
 • Add more features in **principled** fashion
 • Requirements, use cases, benchmarking, KB building;
 system design (incl. theory, usability), implementation, testing (incl. task)
SILK Language Starting Point is LP

- **Declarative Logic Programs (LP)** is starting point for SILK language

 - **Normal LP**, with well-founded semantics. A rule has the form:

 \[H \leftarrow B_1 \text{ and } \ldots \text{ and } B_k \text{ and } \neg B_{k+1} \text{ and } \ldots \text{ and } \neg B_m. \quad (H, B_i \text{ are atoms}^{**}) \]

 * “not” here means closed-world negation, i.e., “negation as failure (naf)”, a.k.a. “weak” negation

 An atom has the form: \(\text{predicate}(\text{argument}_\text{term}_1, \ldots, \text{argument}_\text{term}_N) \)

 e.g., \(\text{height}(\text{Joe}, \text{multiply}(170, \text{centimeter}) \)
LP is **the** Core KR in today’s world … incl. Sem. Web

- LP is the core logical KR of structured knowledge management today
 - Databases
 - Relational / SQL
 - XML semi-structured / XQuery
 - RDF semi-structured / SPARQL (triple stores)
 - Semantic Rule Standards
 - RuleML standards design
 - Rule Interchange Format (RIF)**
 - Semantic Ontologies
 - Most commercial implementations of OWL are based on semantic rules: Description Logic Programs (DLP) + moderate extensions. Oracle, for example.
 - OWL 2** standard includes the RL Profile, i.e., its Rules subset

- The Semantic Web today is mainly based on LP KR
 - ... and thus essentially equivalent to semantic rules
 - You probably just didn’t realize it!

** W3C Last Call Working Draft
Why the Sem. Tech. Industry Needs something like SILK

• Need to **raise abstraction level**, e.g., for SME and NL KA/UI

• **Need robustness & meta-reasoning** for web KB integration
 • Cope with conflict, mediation, context, knowledge quality
 • Defaults \Rightarrow robustness, modularity \Rightarrow scalability
 • Higher-order \Rightarrow puts the meta- deeply in knowledge not just data

• **Hope: be like advance of the Relational model in DBMS**
 • Will Hyper LP be to the 2010s what Relational was to 1970s-80s?
 • (NB: software industry clockspeed was slower back then)
SILK Contributors current/past (partial list)

- Vulcan (Benjamin Grosof, Mark Greaves, Dave Gunning)
- Stony Brook University (Michael Kifer; students H. Wan, S. Liang, P. Fodor)
- SRI International (Vinay Chaudhri, David Martin, Ken Murray, Bill Jarrold)
- BBN Technologies (Mike Dean)
- Ontoprise GmbH (Raphael Volz, Jurgen Angele, Daniel Hansch)
- Automata (Paul Haley)
- Cycorp (Keith Goolsbey, Doug Lenat, Ben Rode)
- Boeing (Peter Clark)
- University of Texas (Bruce Porter)
- University of Toronto (Sheila McIlraith; students H. Ghaderi, S. Sohrabi)
- University of Amsterdam (Bert Bredeweg)
- University of Freiburg (Georg Lausen)
- University of Michigan (Michael Wellman)
- Richard Fikes, consultant (Stanford University)
- (More to come in 2009)
SILK-relevant Cooperations (partial list)

- Project Halo has cooperations with other major research efforts:
 - LarKC (The Large Knowledge Collider), funded by EU
 - http://www.larkc.eu
 - NeOn (Lifecycle Support for Networked Ontologies), funded by EU
 - http://www.neon-project.org
 - DARPA
SILK V1: Overview

• Completed in fall 2008, and refined since

• Implementation: Prototype Hyper LP rule engine
 • Extends Flora-2 system to add higher-order defaults
 • Flora-2, from Stony Brook Univ., included a strong set of advanced features as a point of departure. It’s written on top of XSB, a mature Prolog written in C.

• Language specification (partial)
 • Covers most of the major expressive features
 • Semantics for Higher-Order Defaults, and several other novel feature combinations

• Theory and algorithms for Higher-order Defaults
 • The most fundamental new aspect of Hyper LP
New Theory & Algorithms for Higher-Order Defaults

• Combines Courteous + Hilog, and generalizes

• New approach to defaults: “argumentation theories”
 • Meta-rules specify when rules are defeated
 • [Wan, Grosof, Kifer, et al. ICLP-2009]

• Extends straightforwardly to combine with other key features
 • E.g., Frame syntax, external Actions

• Significantly improves on previous Courteous approach in other ways
 • Eliminates a complex transformation
 • Much simpler to implement
 • 20-30 background rules instead of 1000’s of lines of code
 • Much faster when updating the premises
 • More flexible control of edge-case behaviors
 • Much simpler to analyze theoretically
SILK Current Status – More

- New approach to representing causal change in processes
 - Uses defaults
- Use cases, incl. survey
 - Science AP
 - Business domains
- ReCyc: Rough prototype translator from Cyc to SILK
 - 3 Million axioms from ResearchCyc (translates 99% of the KB)
- Benchmarking of relevant rule systems
 - OpenRuleBench [Liang et al. WWW-2009]

- SILK V2 is in development. Near term steps include:
 - Add expressive features, e.g., Weakened Classical, external Actions
 - Webize more fully, e.g., knowledge interchange, UI
Ecology Ex. of Causal Process Reasoning in SILK

/* Toxic discharge into a river causes fish die-off. */
/* Init. facts, and an “exclusion” constraint that fish count has a unique value */
 occupies(trout,Squamish).
 fishCount(s0,Squamish,trout,400).
 !- fishCount(?,r,?,f,?C1) and fishCount(?,r,?,f,?C2) | ?C1 != ?C2.
/* Action/event description that specifies causal change, i.e., effect on next state */
 @tdf1 fishCount(?,r,?,f,0) :- occurs(?,toxicDischarge,?r) and occupies(?,?r).
/* Persistence (“frame”) axiom */
 @pef1 fishCount(?,r,?,f,?) :- fishCount(?,r,?,f,?).
/* Action effect axiom has higher priority than persistence axiom */
 @pr1 overrides(tdf1,pef1).
/* An action instance occurs */
 @UhOh occurs(s0+1,toxicDischarge,Squamish).

As desired: |= fishCount(s0+1,Squamish,trout,400) and
 fishCount(s0+2,Squamish,trout,0).

Notes: @ prefixes a rule label. ? prefixes a variable. :- means if. !- prefixes an
 exclusion, and means “it’s a conflict if”. In an exclusion, | means given that.
E-Commerce Ex. of Causal Process Reas. in SILK

/* E-commerce delivery logistics. */
/* Initial fact, and prevention constraint that location is unique */
loc(s0,PlasmaTV46,LasVegasWH).
!- loc(?s,?item,?posn1) and loc(?s,?item,?posn2) | ?posn1 != ?posn2.
/* Action/event description that specifies causal change, i.e., effect on next state */
@mov1 loc(?s+1,?item,?addr) and neg loc(?s+1,?item,?warehouse) :-

 shipment(?s,?item,?warehouse,?addr) and loc(?s,?item,?warehouse).
/* Persistence (“frame”) axioms about location */
@pel1 loc(?s+1,?item,?posn) :- loc(?s,?item,?posn).
@pel2 neg loc(?s+1,?item,?posn) :- neg loc(?s,?item,?posn).
/* Action effect axiom has higher priority than the persistence axioms */
overrides(mov1,pel1). overrides(mov1,pel2).
/* An action instance occurs */
@deliv57 shipment(s0+1,PlasmaTV46, WH_LasVegasNV, 9_Fog_St_SeattleWA).

As desired: |= loc(s0+2,PlasmaTV46, 9_Fog_St_SeattleWA) and

 neg loc (s0+2,PlasmaTV46, WH_LasVegasNV).

Notes: @ prefixes a rule label. ? prefixes a variable. :- means if. |- prefixes an exclusion, and means “it’s a conflict if”. In an exclusion, | means given that.
Trust Mgmt. Ex. of Higher-Order Defaults in SILK

illustrating also basic Knowledge-level Communication, and Frame syntax

In Frame syntax: subject[property -> object] stands for property(subject,object).

/* Trust policy administration by multiple agents, about user permissions */

/* Admin. Bob controls printing privileges including revocation (neg). */
Bob[controls -> print]. Bob[controls -> neg print]. /* neg print means it’s disallowed.*/
Cara[controls -> ?priv]. /* Cara is the most senior admin., so controls all privileges. */
/* If an administrator controls a privilege and states at a time (t) that a user has a privilege,
then the user is granted that privilege. Observe that ?priv is a higher-order variable. */
@grant(?t) ?priv(?user) :- ?admin[states(?t) -> ?priv(?user)] and ?admin[controls(?priv)].
/* More recent statements have higher priority, in case of conflict. */
overrides(grant(?t2), grant(?t1)) :- ?t2 > ?t1.
/* Admin.’s Bob and Cara make conflicting statements over time about Al’s printing */
Bob[states(2008) -> neg print(Al)].

As desired: |= neg print(Al). webPage(Al).

/* Currently, Al is permitted a webpage but not to print. */

Notes: @ prefixes a rule label. ? prefixes a variable. :- means if. !- prefixes an
exclusion, and means “it’s a conflict if”. In an exclusion, | means given that.
SILK Roots

- **SILK draws upon previous work on semantic rules**
 - W3C Rule Interchange Format (RIF)
 - RuleML incl. SWRL
 - SWSL (Semantic Web Services Lang.) and WSML
 - Flora and XSB, SweetRules, DLV
 - IBM Common Rules, Ontoprise Ontobroker
 - Description LP, W3C OWL 2 RL, Oracle SW rules
 - OMG PRR
 - ISO Common Logic and OMG SBVR
 - Jena, cwm and N3
 - SQL, SPARQL, XQuery
 - Theory and algorithms of KR from LP, AI, and DB communities
Use Cases for SILK beyond commercial state of art

• There are many!

• Existing use cases from SILK’s research-y or standards-design roots
 • E.g., from RIF, RuleML, SWSL documents and prototypes
 • E-commerce, financial, health, trust, SOA, policies, regulations, mobile, biomed, defense, etc.
 • Many of these are not yet implementable in current well-supported, well-performing commercially deployed systems
 • E.g., they use defaults
 • E.g., they use feature combinations that are not easily available
Outline of Talk

• Overview
 • Vision, Origins, Goals, Effort, Approach, Roots, Status
 • V1 Prototype, Theory, Language; V2 plans
 • Examples and Use Cases

• Drill down on the KR Language and System
 • Requirements analysis
 • Hyper Logic Programs KR approach and expressive features
 • Higher-Order Defaults. Weakened Classical, via Hypermonotonic mapping.
 • Comparison to other semantic rule systems and standards
 • RIF, BRMS, OWL, DBMS, etc.

• Conclusions and Directions
 • Roadmap for SILK and Industry
 • How You can be Involved
More Rationale about LP as Starting Point KR

- Semantics available, but enables **nonmonotonicity**, unlike classical

- A multitude of small and large expressive extensions available
 - Can hope to combine defaults with most of the other major ones

- Can realistically hope to be **web-scalable** performance-wise, unlike highly expressive classical
 - Polynomial computational complexity, under non-onerous restrictions
 - Many optimizations available
 - Established track record of high scalability for relational databases
What One Gives Up by choosing LP as Starting Point

• “Disjunction”, i.e., **Reasoning By Cases**
 • By contrast:
 • LP concludes (A or B) only if conclude A or conclude B.
 • LP prohibits disjunction in head of rule.

• Disjunction is a source of exponential computational complexity (worst-case), when unrestricted
 • Classical logic is NP-complete, even for propositional (3-SAT)
 • Major disjunctive LP approaches are, too
 • Stable semantics for LP is, too (for unstratified, when it diverges from well founded)

• Can hope to reintroduce disjunction in restricted or altered form, or develop work-arounds

• But there are many apps not requiring it, e.g., DBMS, BRMS
Major SILK Requirements on Expressiveness

- **Processes** [For science, BPM. E.g., >50% of questions on Environmental Sci. AP.]
 - Actions, Causality, Events, Reactivity, State Change

- **Knowledge-level Communication** [Knowledge, science, & business are societal]
 - I.e., Import and Merge of External Knowledge, incl. data/facts, ontologies, rules
 - Via Pull/Query, and Via Push/Events
 - From Web, built-ins, specialized reasoners, broad-purpose reasoners
 - **Mediate** ontologies and contexts
 - Interchange with **Classical** logic KR, as well as with LP/rules KR
 - **Uses for Classical include:**
 - Background KBs, e.g., ontology, e.g., about processes
 - Existing techniques and KBs for equations, constraints, and processes
 - Common Logic (and KIF), SBVR, OWL, RDF
Major SILK Requirements on Expressiveness (cont.’d)

- **Defaults (beyond naf)** [For many purposes, pervasively]
 - Exceptions, Priorities, Inheritance, Strong Negation, Preventive Integrity Constraints
 - For OO, robust KB merging/updating, process causality, policy and regulation/law, natural language incl. KA, import of classical, argumentation, hypotheticals and counterfactuals

- **Higher-order, incl. for Meta-reasoning** [For many purposes, pervasively]
 - Convenient, concise abstraction for KR designers, and for KE/SME users
 - Many KR’s have some of it, incl. RDF, OWL-Full, BRMS, Cyc. E.g., transitive_closure(?P).
 - Meta-reasoning uses include: KR macros, KB translation/import, ontology mappings, reasoning control, provenance, KB modularization, navigation in KA, multi-agent & nested belief, context, modals. Plus – the Web is about meta-data.
More SILK Expressive Requirements

• **External Actions, Events, and Queries**
 - Via *procedural attachments*. E.g., query *built-ins*.
 - Similar to production rules and Event-Condition-Action rules
 - *For knowledge communication and processes*

• **Webized syntax**
 - URI names for predicates, individuals, functions, KBs, and attached procedures
 - XML/RDF interchange format for the KR
 - *For knowledge communication*

• **Equality (derived via non-fact rules)** *For entity identity and numerical reas.*
 - Complex explicit derived equalities/equations. Inequalities too.

• **Functions (logical)** *For higher-order and process recursion*
More SILK Expressive Requirements, continued

- **Closed-World** [For defaults, numerical, collections, and meta-reasoning]
 - Unstratified (not just stratified) negation-as-failure (NAF, a.k.a. “weak” negation)
 - Well-founded semantics for NAF so as to preserve tractability and well-definedness
 - Aggregate operators, e.g., count, total, average, setOf. NB: these depend on NAF.
 - **Lloyd-Topor** (freer appearance of logical connectives). NB: this depends on NAF.
 - \{and, naf, or, exists, forall, implies\} in body, \{and, implies, forall\} in head

- **Frame syntax** [Convenient & familiar, e.g., RDF, OWL, UML, Aura]
 - Frame (Object-Oriented style) syntax cf. F-Logic

- **Skolemized existentials** [Convenient & familiar, e.g., RDF, OWL, UML, Aura]

- **Integrity constraints** [Convenient & familiar, e.g., DBMS, UML, Aura]
 - Report violations
 - Prevent violations (via “exclusions”)
SILK Other Reasoning Requirements

- **Explanations:** to users and machines

- **Performance Scalability of Inferencing**
 - Exploit Parallelism

- **Support Forward-Direction and Persistence in Inferencing**
 - Persistent queries and conclusions
 - Truth Maintenance, handling nonmonotonicity and update/event flows

- **Knowledge interchange, with translation between KRs/systems**
 - Via Pull and Push, dynamically, over Web.
 - Data/Facts, Ontologies, Rules
 - Support relevant standards, therefore, e.g., RIF, OWL, RDF, Common Logic
 - Interoperate with Production Rules and similar Event-Condition-Action (ECA) rules
 - Trust management

- **Live in a Distributed World, generally**
Dependencies among Requirements

Processes
- change; grain

Knowledge Communication
- merge; mediate

Defaults
Higher-Order
Dependencies among Requirements II

Processes
- change; grain

Knowledge Communication
- merge; mediate

Defaults ⊕ Higher-Order
- with Weakened Classical
Dependencies among Requirements III

- Processes
 - change; grain

- Knowledge Communication
 - merge; mediate

- Actions, Events
 - Hypermon. Higher-Order Defaults

- Webized syntax

PROJECT HALO

VULCAN
Dependencies among Requirements IV

Processes
- change; grain

Knowledge Communication
- merge; mediate

Actions, Events

Hypermon. Higher-Order Defaults

Functions

Closed-World

Webized syntax

Equality, Frames etc.
Strategy on Expressiveness

- That’s a Lot! Can We Do It? How?
 - Where to Start?
 - How to Factor?

- **Opportunity**: newly combine tightly and synergize several major strands of pure-research progress in logical KR based on extensions of LP from the last 20 years

- Good stuff, but pieces on the floor

- Build up expressiveness in layers (and by relaxing restrictions)
 - Extend syntax and semantics as we go
Outline of Talk

• **Overview**
 • Vision, Origins, Goals, Effort, Approach, Roots, Status
 • V1 Prototype, Theory, Language; V2 plans
 • Examples and Use Cases

• **Drill down on the KR Language and System**
 • Requirements analysis
 • Hyper Logic Programs KR approach and expressive features
 • Higher-Order Defaults. Weakened Classical, via Hypermonotonic mapping.
 • Comparison to other semantic rule systems and standards
 • RIF, BRMS, OWL, DBMS, etc.

• **Conclusions and Directions**
 • Roadmap for SILK and Industry
 • How You can be Involved
Hyper Logic Programs

- SILK uses a new KR: Hyper Logic Programs (HLP)
 - “Hyper” since it’s Web (hypertext) centric, hypermonotonic, & higher-order.

- It integrates several major LP extensions never previously combined:
 - Higher-order and Frames, cf. Hilog and F-Logic
 - + Defaults, cf. Courteous LP (and Defeasible Logic)
 - Newly generalized and modified approach
 - Enables higher-order defaults
 - Implemented in SILK V1

- + Weakened Classical Logic, cf. Hypermonotonic mapping
 - New approach to semantic interchange of LP defaults with classical logic
 - In development for SILK V2
 - Background: Hypermonotonicity of an LP KB means that it is
 - nonmonotonic; and
 - sound but incomplete relative to a corresponding classical KB
Hyper Logic Programs, continued

- HLP combines further a number of other extensions of LP, notably:
 - Webizing, cf. RuleML and RIF
 - URIs for predicates and other logical constants
 - Load-time import of knowledge bases over the Web
 - **External Queries and Actions, cf. Production LP (and Situated LP)**
 - Via procedural attachments. Including built-ins.
 - Enables interoperation with Production/ECA rules (via SweetRules technique)
 - Brings Actions (and events) to the semantic party
 - External Events, via *newly modified approach*
 - Equality, incl. explicit derived, via *newly modified approach*
 - Lloyd-Topor, Aggregations, Integrity Constraints, Skolemization, Functions, misc. other features

- **HLP is still under development (there’s a lot of new expressiveness)**
SILK V2 Preview: Basic Hypermonotonic Mapping

clausal FOL ⇒ Courteous LP

• An FOL clause C:
 L1 or L2 or … or Lk

 is mapped to k directed clauses, one for each choice of head literal:
 L1 :- neg L2 and neg L3 and … and neg Lk
 L2 :- neg L1 and neg L3 and … and neg Lk
 …
 Lk :- neg L1 and neg L2 and … and neg Lk-1

• This is called the omnidirectional ruleset for C, a.k.a. the omni

• Conversely, a naf-free Courteous LP rule is mapped to FOL as a
 material implication, thus clausal. (It’s fairly easy to stick to naf-free.)

• A KR S behaves hypermonotonically ⇒ S is nonmonotonic and when
 its premises are viewed classically, then entailment in S is sound but
 incomplete w.r.t. classical

 • Incompleteness is desirable when there’s conflict
Examples of Basic Hypermonotonic mapping

• /* SBVR Car rental: A driver ?p is Approved only if ?p has a Validated application. */
 • /* FOL: */ forall ?p. Validated(?p) \iff Approved(?p).

 becomes the ff. omnidirectional ruleset in Hyper LP:
 • neg Approved(?p) :- neg Validated(?p). /* Exploit strong negation feature (neg). */
 • Validated(?p) :- Approved(?p).

• /* OWL 2 DL beyond RL: The classes Cat and Bird are disjoint. */
 • /* FOL */ forall ?x. neg (Cat(?x) and Bird(?x)).

 becomes the ff. omnidirectional ruleset in Hyper LP:
 • neg Cat(?x) :- Bird(?x).
 • neg Bird(?x) :- Cat(?x).

• /* Scheduling: Joe’s meeting will be at 3pm or 4pm or 5pm today. */
 • /* FOL source: */ mtg(3p) or mtg(4p) or mtg(5p).

 becomes the ff. omnidirectional ruleset in Hyper LP:
 • mtg(5p) :- neg mtg(3p) and neg mtg(4p).
 • mtg(4p) :- neg mtg(3p) and neg mtg(5p).
 • mtg(3p) :- neg mtg(4p) and neg mtg(5p).
SILK V2 Preview: Hypermon. Mapping from full FOL

- Greatly generalizes the approach of Description LP and OWL 2 RL
- Leverages generalized higher-order defaults feature of Hyper LP
- Each FOL clause is mapped to a small set of LP rules (defaults)
- Covers FOL unrestricted clauses (not just Horn)
- Can further add skolemization, thus cover full FOL
- Can further add Higher-order and Frames, thus cover “FOL++”
- Thus can cover full OWL/RDF, full Common Logic, most of SBVR
- Give up disjunction / reasoning by cases, so is weakened
- Hyper LP handles conflict robustly
Remedying FOL Semantics’ Lack of Scalability

- **Hyper LP handles conflict robustly**
 - Whereas FOL is “Glass Mountain” – it’s **perfectly brittle semantically** in face of contradictions from . . .
 - Quality problems/errors in the data and knowledge
 - Conflict when merging KBs

 E.g., OWL beyond the RL subset suffers this problem

A VLKB with a million or billion axioms formed by merging from multiple Web sources, is unlikely to have **zero** KB/KA conflicts from:

- Human knowledge entry/editing
- Implicit context, cross-source ontology interpretation
- Updating cross-source
- Source trustworthiness

- **Weakening provides a critical advantage for VLKB scalability**
 - **semantically**, as well as computationally
Escape from Glass Mountain

- From the classic European fairy tale “The Princess on the Glass Hill”, in *The Blue Fairy Book*, by Andrew Lang, illustrated by Frank Godwin
Outline of Talk

• Overview
 • Vision, Origins, Goals, Effort, Approach, Roots, Status
 • V1 Prototype, Theory, Language; V2 plans
 • Examples and Use Cases

• Drill down on the KR Language and System
 • Requirements analysis
 • Hyper Logic Programs KR approach and expressive features
 • Higher-Order Defaults. Weakened Classical, via Hypermonotonic mapping.
 • Comparison to other semantic rule systems and standards
 • RIF, BRMS, OWL, DBMS, etc.

• Conclusions and Directions
 • Roadmap for SILK and Industry
 • How You can be Involved
Semantic Rules KR: Features Comparison

<table>
<thead>
<tr>
<th>Level ("generation")</th>
<th>Groups of features</th>
<th>SILK V1</th>
<th>Flora</th>
<th>RIF-BLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G. Basic</td>
<td>ie: Horn, chaining, external queries, built-ins (Level Summary)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>2G. Advanced</td>
<td>(Level Summary)</td>
<td>Most!</td>
<td>lots</td>
<td>some</td>
</tr>
<tr>
<td>Equality</td>
<td>(derived via non-fact rules)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Functions</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Convenience Package:</td>
<td>Frames, integrity constraints, skolemization</td>
<td>Y</td>
<td>Y</td>
<td>R. frames</td>
</tr>
<tr>
<td>Closed-World:</td>
<td>unstratified NAF, aggregates, Lloyd-Topor</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Higher-Order</td>
<td>(incl. reification)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Actions (external)</td>
<td>(via procedural attachments)</td>
<td>Developing</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Base Defaults</td>
<td>(prioritized, cf. Courteous)</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Webized syntax</td>
<td>(URI names and XML/RDF KBs)</td>
<td>Developing</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>3G. Hyper</td>
<td>(Level Summary)</td>
<td>Pioneer!</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Higher-Order Defaults</td>
<td></td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Weakened Classical</td>
<td>(sound interchange with default rules)</td>
<td>Developing</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Other Misc.</td>
<td></td>
<td>(NA)</td>
<td>(NA)</td>
<td>(NA)</td>
</tr>
<tr>
<td>Other Expressive</td>
<td></td>
<td>Developing</td>
<td>R. inherit.</td>
<td>-</td>
</tr>
<tr>
<td>Reasoner Efficiency</td>
<td>(upper-tier on OpenRuleBench)</td>
<td>good</td>
<td>good</td>
<td>NA (standard)</td>
</tr>
</tbody>
</table>

* Summarizes detailed analysis of 40 KR expressive features, 17 systems.

* Notes: R. = Restricted; RIF-BLD = W3C Rule Interchange Format - Basic Logic Dialect.
<table>
<thead>
<tr>
<th>Level</th>
<th>Groups of Features</th>
<th>SILK1</th>
<th>Flora</th>
<th>RIF-BLD</th>
<th>Jena</th>
<th>Onto-broker</th>
<th>Jess</th>
<th>IBM C.R.</th>
<th>DLV</th>
<th>SQL</th>
<th>SPA-RQL</th>
<th>Common Logic</th>
<th>OWL2 RL</th>
<th>OWL2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Horn chain, etc.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Advanced (Level summary)</td>
<td>Most!</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Equality</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Functions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Frames etc.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Closed-World</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>most</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Higher-Order</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Actions</td>
<td>Dev.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Base Defaults</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Webized</td>
<td>Dev.</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Hyper (Level summary)</td>
<td>1st!</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>H-O. Defaults</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Weak. Classi.</td>
<td>Dev.</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Other Express.</td>
<td>Dev.</td>
<td>inherit.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>events</td>
<td>-</td>
<td>disju.</td>
<td>R</td>
<td>R</td>
<td>classical</td>
<td>-</td>
<td>classic.</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>good</td>
<td>good</td>
<td>NA</td>
<td>fair</td>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td>good</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Summary: detailed analysis of 40 KR expressive features, 17 systems.

Notes: Dev. = Developing, R. = Restricted; C.R=Common Rules; disju.=disjunctive.
Features Comparison – More Systems & Stds

<table>
<thead>
<tr>
<th>Level</th>
<th>Groups of Features</th>
<th>SILK1</th>
<th>Flora</th>
<th>Jena</th>
<th>Ontobroker</th>
<th>Jess</th>
<th>IBM C.R.</th>
<th>DLV</th>
<th>SQL</th>
<th>SPA-RQL</th>
<th>Common Logic</th>
<th>OML2 RL</th>
<th>OML2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Horn chain. etc.</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>(Level summary)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Functions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frames etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Closed-World</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Higher-Order</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Base Defaults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Webized</td>
<td></td>
</tr>
<tr>
<td>Hyper</td>
<td>(Level summary)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H-O. Defaults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weak. Classi.</td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td>Other Expres.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td></td>
</tr>
</tbody>
</table>

Background on Systems and Standards:

- Jess is a representative commercial production rule (PR) system. PR was shown 5-7 years ago to have a semantic subset (based on the SweetRules translation). The currently most commercially important business rule management systems (BRMS) are based on PR or similar event-condition (ECA) action rules.

- W3C Rule Interchange Format (RIF)’s Basic Logic Dialect (BLD) is its main semantic part. There is also a framework for extensions. RIF is based primarily on RuleML, except for RIF’s Production Rule Dialect (PRD).

- W3C OWL 2 RL is OWL’s Rules subset (based on Description LP).

- Jena is a popular open-source semantic web toolkit, incl. for rules.

- Ontobroker is a commercial forward-chaining LP system.

- IBM Common Rules (C.R.) introduced the base defaults feature.

- Common Logic (CL) is an ISO standard for classical logic, used also by OMG’s Semantic Business Vocabulary and Rules (SBVR) standard.

- DLV is a disjunctive LP system, by Univ. of Calabria (it has OR in rule heads).
Features Comparison – More Systems & Stds

<table>
<thead>
<tr>
<th>Level</th>
<th>Groups of Features</th>
<th>SILK1</th>
<th>Flora</th>
<th>RIF-BLD</th>
<th>Jena</th>
<th>Onto-broker</th>
<th>Jess</th>
<th>IBM C.R.</th>
<th>DLV</th>
<th>SQL</th>
<th>SPA-RQL</th>
<th>Common Logic</th>
<th>OWL2 RL</th>
<th>OWL2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Horn chain, etc.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Advanced</td>
<td>(Level summary) Most!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equality</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Functions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Frames etc.</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Closed-World</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Higher-Order</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>Actions</td>
<td>Dev.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Base Defaults</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Webized</td>
<td>Dev.</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Hyper</td>
<td>(Level summary) 1st!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H-O. Defaults</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Weak. Classi.</td>
<td>Dev.</td>
<td>N</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other Expres.</td>
<td>Dev.</td>
<td>inheri.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>events</td>
<td>-</td>
<td>disju.</td>
<td>R</td>
<td>R</td>
<td>classical</td>
<td>-</td>
<td>classical</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
</tr>
</tbody>
</table>

More features than any other

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.
Features Comparison – More Systems & Standards

<table>
<thead>
<tr>
<th>Level</th>
<th>Groups of Features</th>
<th>SILK1</th>
<th>Flora</th>
<th>RIF-BLD</th>
<th>Jena</th>
<th>Onto-broker</th>
<th>Jess</th>
<th>IBM C.R.</th>
<th>DLV</th>
<th>SQL</th>
<th>SPARQL</th>
<th>Common Logic</th>
<th>OWL2 RL</th>
<th>OWL2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Horn chain, etc.</td>
<td>Y</td>
</tr>
<tr>
<td>Advanced</td>
<td>(Level summary)</td>
<td>Most!</td>
<td>lots</td>
<td>some</td>
</tr>
<tr>
<td>Equality</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Functions</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Frames etc.</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>Closed-World</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>most</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Higher-Order</td>
<td></td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Actions</td>
<td></td>
<td>Dev.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Base Defaults</td>
<td></td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Webized</td>
<td></td>
<td>Dev.</td>
<td>R.</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Hyper</td>
<td>(Level summary)</td>
<td>1st!</td>
<td>N</td>
</tr>
<tr>
<td>H-O. Defaults</td>
<td></td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Weak. Classi.</td>
<td></td>
<td>Dev.</td>
<td>N</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Other Express.</td>
<td></td>
<td>Dev.</td>
<td>inherit.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>events</td>
<td>-</td>
<td>-</td>
<td>R</td>
<td>R</td>
<td>classical</td>
<td>-</td>
<td>classical</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td>good</td>
<td>good</td>
<td>NA</td>
<td>fair</td>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td>good</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Much more expressive than production/ECA rules

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disj. = disjunctive.
Features Comparison – More Systems & Stds

<table>
<thead>
<tr>
<th>Level Groups of Features</th>
<th>SILK1</th>
<th>Flora</th>
<th>RIF-BLD</th>
<th>Jena</th>
<th>Onto-broker</th>
<th>Jess</th>
<th>IBM C.R.</th>
<th>DLV</th>
<th>SQL</th>
<th>SPA-RQL</th>
<th>Common Logic</th>
<th>OWL2 RL</th>
<th>OWL2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td></td>
</tr>
<tr>
<td>Horn chain, etc.</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>Y</td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Advanced (Level summary)</td>
<td>Most!</td>
<td>lots</td>
<td>some</td>
<td>some</td>
<td>some</td>
<td>some</td>
<td>some</td>
<td>some</td>
<td>some</td>
<td>some</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equality</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td></td>
<td>R</td>
<td>Y</td>
</tr>
<tr>
<td>Functions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Frames etc.</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Closed-World</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Higher-Order</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td></td>
<td>R</td>
<td>Y</td>
</tr>
<tr>
<td>Actions</td>
<td>Dev.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Base Defaults</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Webized</td>
<td>Dev.</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td></td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Hyper (Level summary)

NEWLY COMBINES previous advanced features:

- e.g., \{full Frames + Base Defaults\}
- + \{full Closed-World + Actions\}
- + \{fully Webized + good Efficiency\}

Notes: Dev. = Developing, R. = Restricted; C.R. = Common Rules; disju. = disjunctive.
Features Comparison – More Systems & Stds

<table>
<thead>
<tr>
<th>Level</th>
<th>Groups of Features</th>
<th>SILK1</th>
<th>Flora</th>
<th>RIF-BLD</th>
<th>Jena</th>
<th>Onto-broker</th>
<th>Jess</th>
<th>IBM CR</th>
<th>DLV</th>
<th>SQL</th>
<th>SPA-RQL</th>
<th>Common Logic</th>
<th>OML2 RL</th>
<th>OML2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Horn chain. etc.</td>
<td>Y</td>
</tr>
<tr>
<td>Advanced (Level summary)</td>
<td>Most!</td>
<td>Y</td>
<td>lots</td>
<td>some</td>
</tr>
<tr>
<td>Equality</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Functions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Frames etc.</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>Closed-World</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>most</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Higher-Order</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>N</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Actions</td>
<td>Dev.</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Base Defaults</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Webized</td>
<td>Dev.</td>
<td>R</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Hyper (Level summary)</td>
<td>1st</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>H-O. Defaults</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Weak. Classi.</td>
<td>Dev.</td>
<td>N</td>
</tr>
<tr>
<td>Misc.</td>
<td>NA</td>
</tr>
<tr>
<td>Other Expres.</td>
<td>Dev.</td>
<td>N</td>
</tr>
<tr>
<td>Efficiency</td>
<td>good</td>
<td>good</td>
<td>NA</td>
<td>fair</td>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td>good</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Advanced-Level DELTAS w.r.t. Flora:

V1: Base Defaults;

V2 (in Dev.): Actions, Webized

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.
Features Comparison – More Systems & Stds

<table>
<thead>
<tr>
<th>Level</th>
<th>Groups of Features</th>
<th>SILK1</th>
<th>Flora</th>
<th>RIF-BLD</th>
<th>Jena</th>
<th>Onto-broker</th>
<th>Jess</th>
<th>IBM C.R.</th>
<th>DLV</th>
<th>SQL</th>
<th>SPA-RQL</th>
<th>Common Logic</th>
<th>OWL2 RL</th>
<th>OWL2 DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Horn chain. etc.</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td>Advanced</td>
<td>(Level summary)</td>
<td>Most!</td>
<td>lots</td>
<td>some</td>
</tr>
<tr>
<td></td>
<td>Equality</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td></td>
<td>Functions</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td></td>
<td>Frames etc.</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td></td>
<td>Closed-World</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td></td>
<td>Higher-Order</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td></td>
<td>Actions</td>
<td>Dev.</td>
<td>N</td>
<td>N</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td></td>
<td>Base Defaults</td>
<td>Y</td>
<td>N</td>
<td>N.</td>
<td>N.</td>
</tr>
<tr>
<td></td>
<td>Webized</td>
<td>Dev.</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R.</td>
<td>R.</td>
</tr>
<tr>
<td>Hyper</td>
<td>(Level summary)</td>
<td>1st!</td>
<td>N</td>
<td>N.</td>
<td>N.</td>
</tr>
<tr>
<td></td>
<td>H-O. Defaults</td>
<td>Y</td>
<td>N</td>
<td>N.</td>
<td>N.</td>
</tr>
<tr>
<td></td>
<td>Weak. Classi.</td>
<td>Dev.</td>
<td>N</td>
<td>N.</td>
<td>N.</td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Other Expres.</td>
<td></td>
<td>Dev.</td>
<td>inherit.</td>
<td>-</td>
<td>-</td>
<td>events</td>
<td>-</td>
<td>disj.</td>
<td>R</td>
<td>R</td>
<td>classical</td>
<td>-</td>
<td>V.</td>
<td>V.</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td>good</td>
<td>good</td>
<td>NA</td>
<td>fair</td>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td>good</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

FUNDAMENTALLY NEW

Hyper-Level features:

V1: Higher-Order Defaults;

V2 (in Dev.): Weakened Classical

- **Summarizes detailed analysis of 40 KR expressive features, 17 systems.**
- **Notes:** Dev. = Developing, R. = Restricted; C.R.=Common Rules; disj.=disjunctive.
KR Features Comparison: Cyc

- SILK also draws upon Cyc
 - Plenty to learn from Cyc’s design and experience
- Cyc lacks (as yet) a well-understood semantics, so it’s not quite a semantic rule system
 - Previously, Cycorp has described it both in terms of FOL and defaults
 - However, preliminary indications from the ReCyc translation effort indicates Cyc’s KR is closer in spirit to LP than to Classical
- Cyc’s set of KR features correspond roughly to SILK’s
 - This provides some confirmation for SILK’s goals w.r.t. features
Outline of Talk

• **Overview**
 - Vision, Origins, Goals, Effort, Approach, Roots, Status
 - V1 Prototype, Theory, Language; V2 plans
 - Examples and Use Cases

• **Drill down on the KR Language and System**
 - Requirements analysis
 - Hyper Logic Programs KR approach and expressive features
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.

• **Conclusions and Directions**
 - Roadmap for SILK and Industry
 - How You can be Involved
BRMS Industry Roadmap: facing disruption

- Semantic rules is a prospectively truly disruptive innovation for the existing business rules management systems (BRMS) industry sector

 - Strategic analysis of evolving market dynamics and what players should do about it
 - Done with a Management professor hat on
Reflections on Halo

• Halo is one of the most ambitious “classic AI” R&D programs in the US
 • We bring together graduate students, research labs, and universities into a unified, ambitious project
 • Halo is known worldwide

• Part of an increasingly-integrated strategy at Vulcan to invest in semantics and advanced knowledge tools
 • Other investments: Radar Networks, ZoomInfo, Evri, etc.

• Semantic MediaWiki+ is an early spinout
SILK – Recap

- A KR Language and KR System with reasoner, UI, interchange
- Goal: Expressiveness + Semantics + Scalability + Web
- Focus: Defaults and Processes
- Hyper LP KR combines new features
 - Defaults and Weakened Classical, cf. generalized Courteous LP
 - External Actions and Events (and Queries), cf. generalized Production LP

with previous advanced features
- Higher-order and Frames, cf. Hilog and F-Logic
- Webized syntax, cf. RIF/RuleML and OWL/RDF
- Closed-World, cf. well-founded unstratified NAF
- Good Efficiency of reasoner performance
- Equality, Functions, and misc. other less glamorous features

- Status: prototype engine, language, and theory for expressive heart
 - V1 adds Higher-Order Defaults to Flora
 - Extensive requirements analysis, use cases, benchmarking; ReCyc translation
 - V2 in development
SILK – Recap, continued

- Radically extends the KR power of W3C OWL, SPARQL, and RIF – and of SQL
 - Defaults and robust conflict handling – *cope with knowledge quality and context*
 - Higher-order and flexible meta-reasoning – *elevate meta-data to meta-knowledge*
 - Actions and events, cf. production rules and process models – *activate knowledge*

- Raises the KR abstraction level for business users (SMEs) and NL KA/UI

- Use cases in business policies, ontology mapping, e-commerce, biomed, ...*

- Redefining the KR playing field for semantic web, business rules, and rule-based process management
 - Defaults and Higher-Order – yet retain computational web scalability
 - Escape from Glass Mountain – yet retain grade-AAA model-theoretic semantics
Future Directions for SILK

- Process – more complex
- Natural Language KA and UI
- Parallelism in reasoning
- Connectors to Semantic Web, legacy BRMS and DBMS
- Uncertainty
- Disjunction
- And Use Cases, of course
Impact Opportunities for SILK and HalAR

- **Improve by orders of magnitude:**
 - Scale of practical semantic default+actions reasoning
 - \(<\sim 1000 \text{ rules } \Rightarrow 100,000+ \text{ rules}\)
 - **Collaboration costs of multifold KB merging** when there’s conflict (as is usual)
 - Can take human out of the loop at run time
 - Population of users capable of specifying semantic rules
 - “KR Power to the People!” Leverage Aura and SMW+ KA/UI front-ends.

- **Synergize best of last 20 years of pure-research progress in LP KR**
 - \(\Rightarrow\) Redefine KR playing field of semantic web, business rules, & process management

- **Provide a key missing research piece for SOA / web services**
 - Enable building shared business/govt KBs on processes & policies \(\Rightarrow\) virtuous circle

Key KR infrastruct. for widely-authored VLKBs for science and business
that answer questions, proactively supply information, and reason powerfully
Why the Sem. Tech. Industry Needs something like SILK (repeat)

- Need to **raise abstraction level**, e.g., for SME and NL KA/UI

- Need robustness & meta-reasoning for web KB integration
 - Cope with conflict, mediation, context, knowledge quality
 - Defaults \Rightarrow robustness, modularity \Rightarrow scalability
 - Higher-order \Rightarrow puts the meta- deeply in knowledge not just data

- **Hope:** be like advance of the Relational model in DBMS
 - Will Hyper LP be to the 2010s what Relational was to 1970s-80s?
 - (NB: software industry clockspeed was slower back then)
How You can be Involved

• General Contact: Benjamin Grosof benjaming@vulcan.com
 • Suggest design, use cases, experts, cooperations

• Visit the SILK webpage and sign up for the mailing list so you’ll be alerted of announcements about SILK
 • URL: http://silk.projects.semwebcentral.org
 • Mailing list: silk-announce@semwebcentral.org (very low volume)

• Provide comments on SILK language design
 • Initial public draft in ~ fall 2009
 • Plan to propose a RIF extension with defaults and actions
 • Corresponding to a large expressive subset of SILK

• Try out SILK software
 • Prototype, free for research use
 • V1 public release in ~ fall 2009; V2 in 2010

 • Also SMW+ upcoming release will have simple semantic LP rules of SILK-y flavor
 • In ~ fall 2009. Limited to Horn.
Acknowledgements

- **SILK contributors**
 - (previously listed)

- **Contributors to several key previous KR efforts**
 - RuleML and SWSL (Semantic Web Services Language) standards designs
 - SweetRules and Flora-2 systems

- **Especially:**
 - Michael Kifer, Mark Greaves, Dave Gunning, Mike Dean, Hui Wan, Paul Haley, Vinay Chaudhri, David Martin, Keith Goolsbey, Harold Boley, Said Tabet, and Guizhen Yang
SILK –
What the next generation Web will be spun from

Thank You